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Critical behavior of a strain percolation model for metals
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Extensive simulations of a strain percolation model for a deforming metal have been performed to examine
its strain behavior. We find that the total strain exhibits critical power-law behavior that is well explained by
two-dimensional percolation theory. Near the critical point, most of the strained cells organize themselves
around a state having the minimum or at least marginally stable strain regardless of the initial conditions. A
strain much greater than the minimum stable strain generally decays to a lower value when transmitted to an
unstrained cell. The universal behavior of the total strain in the system is a consequence of the self-organizing
character of the strain in the critical cluster. Although the probability distributions for the total strain and cluster
size appear to exhibit nonuniversal behavior, this may merely represent a transient response before crossover
to a true asymptotic, universal behavior occurs. Other critical aspects of the model are also discussed.
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I. INTRODUCTION

In previous papers, we introduced and reported on
geometrical aspects of a percolation model for strain in m
als @1,2#. We believe this model corresponds, in stage
metal deformation, to the fine slip line structure formed in
stages of metal deformation. See Refs@3,4# for current re-
views of the general subject. In stage I, the slip is compo
exclusively of such lines, which can be as long as the sp
men side, are parallel to the primary slip planes, are dist
uted quite uniformly on the surface, and have a height of
order of a few Burgers vectors@5,6#. As deformation pro-
ceeds, secondary slip begins, the fine slip becomes more
erogeneous, and by stage III, has localized into gross
bands @5,6#. But within these bands, the fine slip is st
present as a well defined fine structure@7,8#, with an appar-
ent minimum distance between the slip lines of the orde
50 nm, and a height still of the order of a few Burgers ve
tors @8#. In addition to the strong localization of the fine sl
into bands, the slip is highly localized in time, appearing
bursts of strain, or avalanches, lasting less than 0.1 s@9# ~and
perhaps much less than that@10#! and separated by muc
longer times. Pond measured relaxation times between b
of the order of 2 s@9#, but the time between bursts is almo
certainly strain rate dependent. It is not clear whether o
one, or perhaps a few slip line production events are p
duced in each strain burst@9#.

We believe the production of these fine slip lines, whi
are the elementary events underlying the entire deforma
process, can be modeled in stage III by the strain percola
model @1,2#. ~The model assumes the presence of a w
formed and partially ordered dislocation cellular structu
which is only formed during and after stage II, when exte
sive secondary slip makes its appearance.! In previous pa-
pers, we have developed an approximate mean field des
tion of the model, studied the purely geometrical aspects
the strain clusters generated in the model, and shown
these geometrical aspects are in the same universality
as standard percolation theory@11#. But it is the strain gen-
erated by the system that is essential to the physical prob
1063-651X/2002/65~4!/046146~10!/$20.00 65 0461
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Therefore, our study of the model has been incomplete,
cause the main object of study in the previous papers was
geometrical aspects of the strain clusters, not the assoc
strain. In the current paper, by focusing directly on the str
variable, itself, which has no counterpart in standard per
lation theory, we will make predictions for fine slip stra
that can then be subjected to experimental verification.

In particular, such experimental explorations are curren
in progress using atomic force microscopy to study the s
line height profiles and transmission electron microscopy
study the underlying dislocation cell structure. Addition
collaborative work is planned to use acoustic emission
photoemission experiments to study the time dependenc
the percolation events. So the results of this paper will stim
late extensive experimental efforts that can be used bot
verify the basic model and show how the model should
modified and extended. In contrast to the strain predictio
the purely geometrical aspects of the model are not so ea
accessible to experimental measurement.

Our percolation model for strain has been motivated b
conviction that statistical aspects of metal deformation
dominant, and that the concepts of percolation apply v
naturally to the generation of strained clusters during me
deformation. Indeed, percolation can be found in many fie
of physics, e.g., fracture networks@12#, electrical conductiv-
ity @11#, flow in a random media@13#, etc. A common feature
of the systems is critical power-law behavior characteriz
by a few critical exponents and their fractal structures n
the critical point. A self-organized critical~SOC! system
@14–17# exhibits such features without the need to fine-tu
parameters. Using a simple cellular automaton sand
model, Bak et al. showed that the system evolves into
barely stable critical state at which a scale-invariant frac
structure emerges due to the lack of length~time or size!
scales present in the system@14#. A characteristic feature in
SOC systems is a power-law decay in the size distribution
the dissipation events. A deforming material has been sho
to exhibit such a feature in that an increase of the pla
strain results in avalanches that occur within a very sh
time scale.
©2002 The American Physical Society46-1
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Y. SHIM, L. E. LEVINE, AND R. THOMSON PHYSICAL REVIEW E65 046146
It is well known that a deforming metal is a highly diso
dered, complex system on various length scales because
ing the deformation process, a large number of dislocati
~line defects! are produced and they interact with each oth
by long-range 1/r forces as well as short-range forces. Due
the increase in dislocation density and the complex mu
interactions between dislocations during plastic deformat
work hardening occurs. As a result of the deformation p
cess, heterogeneous cell structures are formed, in which
dislocation density walls surround regions of very low dis
cation density; see Ref.@3# for a critical review of dislocation
patterning. Therefore, a theory of work hardening must
plain both the cell formation process and the transport
mobile dislocations through the walls of the cell structure.
spite of intensive efforts extending over several decade
solution to the problem of work hardening remains elusiv

Despite all the complexity occurring during the deform
tion, a fractal structure has been identified in transmiss
electron micrographs of the dislocation cell structure of a
single crystal after tensile deformation@18# and in a simula-
tion of a stochastic dislocation dynamics model@19#. A box-
counting analysis~fractal analysis! of the structures reveal
that the cell size and dislocation wall size distributions e
hibit power-law behavior@19,20#. Another interesting feature
given in Ref.@20# is a shape change in the probability dist
bution of the total dislocation densities, which is the stea
state solution of a theoretical two-dimensional dislocat
density evolution equation proposed for the transmiss
electron micrograph. Depending on the noise intensity in
system that is inversely proportional to the external stre
the distribution changes from a power-law decay to an as
metric bell shape function as the external stress increa
From the statistical physics point of view, these critical pro
erties of a deforming metal confirm that the system should
treated as a stochastic dynamical system.

Kocks @21# proposed a statistical model of a dislocati
line gliding through random immobile obstacles under
external stress, and the resulting critical shape of the di
cation line@22# is quite similar to that observed in an inva
sion percolation model in random media@13#. In the Kocks
model, the externally applied stress must be larger than
yield stress in order for the dislocations to percolate throu
the obstacle distribution; this leads to the existence of a c
cal stress at the depinning transition point. Since a dislo
tion line in the model is driven through the random immob
obstacles by an external stress, we note that the phy
picture of the motion is rather similar to that of a drive
interface or line motion in a quenched random noise by
external force@23#. But the Kocks model focuses on th
percolation of a single dislocation through a set of obstac
whereas ours addresses the statistical transport of colle
groups of dislocations through the 3D cell structure. Th
the Kocks model applies to the early stages of deforma
near the initial yield, whereas ours applies to a system n
stage III after significant strain has occurred, and disloca
ordering is well advanced.

In this paper, we determine the universality class of
strain related quantities of the strain percolation model
study strain-strain correlation functions in the light of t
04614
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geometrical aspects of the model. It is also important
stress that although our model is a simplified statisti
model of a deforming metal, we hope to capture the k
mechanisms of strain propagation and to explain statist
properties of the system in terms of the universality cla
This paper is organized as follows. In Sec. II, we present
strain percolation model in detail and simulation results
given in Sec. III. We conclude in Sec. IV.

II. MODEL

First, we assume that a dislocation cell structure exists
a metal single crystal and then, as a response to an exte
stress incrementdsext, a strains0, is nucleated at some wea
cell on a slip plane. We consider two different mechanis
of strain propagation from a strained cell to unstrained nei
boring cells. In the first case~case I!, a relatively stable wall
can act as a source of new dislocations and the strainspropa-
gates by activating sources in such walls. Sinces is equiva-
lent to a small pileup of dislocations expanding in t
strained cell, the stress acting on the wall barrier between
two cells is proportional to the number of dislocations in t
pileup @24#. In this case, we then assume that the magnit
of strain induced in an unstrained cell is linearly proportion
to the strain in a neighboring strained cell. The proportion
ity factor is a stochastic variable that reflects the distribut
of sources within the walls. In the second case~case II!, as an
additional relatively rare mechanism, unstable locks withi
wall can be unzipped by a nearby dislocation pileup that
lead to a large localized strain with the amount of strainP2.
Since the probabilityK of unzipping a lock is assumed to b
linearly proportional to the number of dislocations in th
pileup, K5sK0 /P2!1. K0 is a proportionality constant. In
case I,K050.

The law of strain propagation from a strained cell to
neighboring unstrained cell is thus given as

s* 5H P2 for 0<h1<K

sP1h2 for K,h1<1,
~1!

wheres* is the number of dislocations induced in the pre
ously unstrained cell ands is the number in its strained
neighbor.P1 is a measure of how efficiently the cell wal
can transmit strain from a strained cell to an unstrained
via source activation.h1 and h2 are random numbers with
0<h1 , h2<1. The values of these parameters must be
termined either from experiment or from dislocation simu
tions ~i.e., from the underlying cell physics!.

When an unstrained cell has more than one strai
neighbor, there are several possible rules that can be use
determining the transmitted strain. In this paper, we cons
two different sets of rules, referred to as modelsA andB. In
model A, the amount of strain transmitted to the unstrain
cell s* takes the largest value among the contributions fr
its neighbors. In modelB, the unstrained cell takes the firs
successful strain transmission as the computer program s
through the strained neighbors. In both models, growth o
strained cluster takes place only on its periphery. Since
locations are discrete entities, the minimum amount of str
6-2
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CRITICAL BEHAVIOR OF A STRAIN PERCOLATION . . . PHYSICAL REVIEW E65 046146
that can be induced in an unstrained cell is unity; ifs* ,1 in
a simulation, we sets* 50. In a real metal, the maximum
amount of strain that can be induced in a cell,sm, depends
on the dislocation wall properties. Accordingly, ifs* .sm,
thens* is set tosm. We considersm to be a model param
eter. Thus, the independent model parameters areP1 , P2 ,
K0 , s0, andsm.

We note that a great deal of information on the values
these parameters, as well as the functional form for the
chastic function, can be obtained by atomic force microsc
measurements of slip lines. For example, measurem
looking at the variation of slip line heightalong individual
slip lines could yield information on the distribution o
strains occurring within a percolating cluster. This inform
tion would need to be combined with transmission elect
microscopy data on the underlying dislocation cell stru
tures. In situ high-resolution reflection x-ray topograph
could also provide useful information by simultaneously i
aging both the formation of slip lines and the underlyi
near-surface dislocation structures.

Our simulations have been carried out on a 2D regu
square lattice, with no cell size variation, where the line
system size isL, and all the length scales in the system a
measured in units of a linear cell sizer c51. All of the strain
variables are measured in units of the minimum amoun
strain that can be induced in an unstrained cell, i.e.,smin
51. As noted in the Introduction, in a standard percolat
problem, a change in the lattice geometry changes the pe
lation threshold but does not change the universality clas
single cluster is grown from the center of the system u
growth stops. 2D is the relevant dimension for this probl
since we consider slip on only a single slip plane. Althou
this growth algorithm is similar to that of Leath@25#, it is a
correlated percolation problem unlike other random perco
tion problems since the probability that a site is strain
depends on the strain of its neighbors as given in Eq.~1!.
Most of the reported simulations focus on modelA for both
subcritical and supercritical regimes but relevant results
modelB are given in Sec. IIIC. We first show results for the
subcritical regime for modelA.

III. RESULTS

A. Subcritical regime „P1ËP1c…

The general shape of a spanning cluster at the crit
point is fractal, as shown in Fig. 1. The overall fractal sha
does not depend on the detailed model parameters as lo
the system is near the critical point. On the other hand,
distribution of strain changes dramatically when the den
of the unstable locks becomes nonzero. WhenK50 ~case I!,
the spanning cluster shown in Fig. 1~a! for a small initial
strains052.2 is quite ramified, but the localized regions ha
ing a large strain are relatively compact. For this set of
rameters, the critical point is atP1c51.306(2) as shown in
Fig. 2. For a larges0, the system has a large strain near t
initiation point, but this strain decays quickly as the clus
extends. For s0510 and K050, we obtained P1c
51.3064(4).
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FIG. 1. Spanning cluster at the critical point. Darker color re
resents larger strain and lighter color represents smaller strain
cell. Here,s052.2 andL5401. ~a! is for K050 with P151.306
andsm5`, and~b! is for K050.01 withP151.2926,P2540, and
sm540. Note that~a! is for case I and~b! is for case II.

FIG. 2. The percolation threshold for cases shown in Fig.
P1c51.306(2) for Fig. 1~a! andP1c51.2926(30) for Fig. 1~b!.
6-3
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Y. SHIM, L. E. LEVINE, AND R. THOMSON PHYSICAL REVIEW E65 046146
When KÞ0 ~case II!, some of strained cells develop
large strain mainly due to the unzipping process, which
turn, increases the probability of activating the unzippi
process (K5sK0 /P2) in a neighboring cell. This leads t
ridge shaped regions of large strain as shown in Fig. 1~b!.
Note that if such a process does not occur consecutively
nearby cell, the large strain decays rapidly. Furthermo
when the unzipping process is activated, the critical value
P1 becomes lower than that for case I because the system
a greater chance of developing a large strain. Figure 2 sh
the extrapolation of the critical point~percolation threshold!
to the thermodynamic limit (L→`) for the cases shown in
Figs. 1~a! and 1~b!. Not surprisingly, the critical value forP1

is insensitive to changes ins0 and sm, but for case II, this
critical value is quite sensitive to changes inP2 andK0.

We found previously@2# that for case I the mean strai
defined as the strain per strained cell is^s&c'2 at the critical
point. Insight into the mechanism responsible for this me
strain can be obtained by considering how strain propag
just below and at the critical point. Just below the critic
point, the average strain on the periphery of a growing cl
ter must decrease until the growth stops. At the critical po
the strain propagation stabilizes to a small but finite va
that is close to the minimum stable value of strain. For a
trial transmission, on the average, the value of the strain
the strained site must be such that from Eq.~1!,

P1c^h2&^s&>1. ~2!

Thus, the minimum stable value of strain is given appro
mately by ^s&stable'2/P1c'1.5, which, as expected, i
slightly smaller than the measured mean strain. For cas
the mean strain at the critical point becomes larger since
large strains from the unzipping events give an additio
strain increment.

From the argument just presented, the existence of a c
cal mean strain is seen to depend directly on the requirem
of a minimum value for the transmitted strain, and thus
the discrete nature of the dislocations. Not surprisingly,
mean strain will be seen to play an important physical a
mathematical role in the following.

A useful measure of how strain is apportioned among
cells is given by the strain probability distribution functio
P(s), where P(s) ds is the average number of sites in
simulation having the strains. As can be seen in Fig. 3,P(s)
is a slowly varying function near the minimum strain. F
larger strains, however, the strain distribution exhibits a f
power-law decay withP(s);s24.41 whenK050, but when
K0Þ0, it deviates from the power law. The difference b
tween the two curves fors052.2 and 10 is due to finite-siz
effects, since for an infinite system, the behavior near
origin where the strain initiates will have negligible influen
on the total system behavior. As predicted above,^s&stable is
very close to 1.5. A strains.^s&stable is most likely to decay
to a lower value when transmitted to an unstrained c
Since Figs. 1~a! and 1~b! use the same gray scale and t
lightest gray is roughlŷ s&c , most of the cells seem to b
04614
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near the minimum or at least marginally stable state rega
less of the initial conditions, a behavior similar to that fou
in other SOC systems.

Figure 4 shows the critical behavior of the total strainT
defined asT(P1)5^( rs(r ,P1)& for case I~with s052.2 and

FIG. 3. Probability distribution of having strains at the critical
point for the cases shown in Fig. 1 and also for a larger initial str
of s0510 with K050. Sharp peaks are due to the initial strain (s0)
and the result of the unzipping process (P2540).

FIG. 4. Total strain as a function ofP1 and its scaling plots.~a!
is for s052.2 and~b! is for s0510 with K050. A power-law fit
yields ~a! 22.34(2) and~b! 22.36(4). Dotted lines in~a! and ~b!
are power-law fits to the data.~c! and~d! are scaling plots for case
I and II shown in Fig. 1:~c! and ~d! are forK050 and 0.01 with
s052.2, respectively. Here,x/n51.79 andn54/3 with the critical
pointsP1c given in Fig. 2.
6-4
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CRITICAL BEHAVIOR OF A STRAIN PERCOLATION . . . PHYSICAL REVIEW E65 046146
10! as well as its scaling result for case I and II shown in F
1. Near the critical point, the total strainT is well described
by a power law such thatT(P1);(P1c2P1)2x with x
52.35(2) as shown in Figs. 4~a! and 4~b!. The deviation
from the power law is due to finite-size effects. Note that
critical exponent for the total strain isx'g52.389, whereg
is the critical exponent for the mean cluster sizeS(P1)
;(P1c2P1)2g. As can be seen in Fig. 4~b!, for a large initial
strain ofs0510, a much larger system size is required to s
the asymptotic power-law behavior due to the effect of
initiation point. The excellent scaling collapse in Fig. 4~c!
and 4~d! confirms that the total strain is simply proportion
to the mean cluster size, and implies that for a large sys
size, the total strain has the same scaling law as the geom
cal mean cluster sizeS,

T~P1 ,L !;Lx/nQ~L/jg!, ~3!

wherex5g and n54/3. The scaling function in Eq.~3! is
Q(x);x2x/n for x@1 andQ(x);const. forx!1 with the
geometrical correlation lengthjg(P1);uP1c2P1u2n. Thus,
this result illustrates that the geometrical behavior domina
the strain behavior, and clearly demonstrates that the t
strain displays universal behavior regardless of the valu
K0 ands0.

Further insight into the dominant role of geometry on t
strain variable can be obtained by examining the mean st
per strained site,̂s(P1)&5^«(P1)/t(P1)&, where t and «
5( rs(r ,P1) are the cluster size and total strain for ea
simulation, respectively. It is clear from Fig. 5 that^s&c
2^s(P1)& also exhibits power-law behavior near the critic
point, and the critical behavior of the mean strain can
described by

^s&c2^s~P1!&;uP1c2P1uk, ~4!

where^s&c is the asymptotic mean strain at the critical poi
The exponent isk50.33(1) and 0.91(2) forK050 and
0.01, respectively, whens052.2. Note that sincek.0, when

FIG. 5. The mean strain as a function ofP1 for the case shown
in Fig. 1~a!. The asymptotic mean strain at the critical point
^s&c52.14. The inset shows the distribution of the mean strain
s057, K050 andL5801.
04614
.

e

e
e

m
tri-

s
tal
of

in

l
e

.

P1→P1c,^s&c2^s(P1)&→0, and this behavior is consisten
with the asymptotic scaling result ofT(P1)/S(P1)
5^«(P1)&/^t(P1)&;const.

Since if «(P1);t(P1), thenk50, Eq. ~4! suggests that
there might be a small correction to scaling for the to
strain. UsingS(P1);uP1c2P1u2g with an approximation
^s(P1)&'^«(P1)&/^t(P1)&, one can estimate roughly th
correction fromT(P1)'uP1c2P1u2g(T01Tcorr.) where T0
'a^s&c is constant~wherea is also constant! and the correc-
tion term isTcorr.;uP1c2P1uk8 with k85k; an actual calcu-
lation yieldsk8'3/4 andT0'2.2 fors052.2 andK050. As
the system approaches the critical point, however, the cor
tion becomes negligibly small compared to the leading te
T0, and eventually, the asymptotic scaling form given in E
~3! is recovered. Thus, the exponentk(.0) implies the pres-
ence of a correction to scaling and determines the decay
toward the asymptotic mean strain. Since we find that
value ofk depends strongly on the strain related model
rameterss0 , P2, and K0 , k appears not to be a univers
exponent. The inset of Fig. 5 shows the distribution of t
mean strain,P(^s&) for case I withs057. As the system
approaches the critical point, the location of the peak mo
toward the critical valuê s&c and the distribution become
sharper. We conclude that the geometry of a strained clu
is determined by the geometrical correlation lengthjg , but a
decay toward the asymptotic mean strain is controlled by
strain-dependent exponentk.

Figure 6 shows the probability distributions for the clus
size and total strain, where for example,P(t) dt is the aver-
age number of clusters found to have sizet. When the initial
strain s052.2, the size distributionP(t) exhibits a power-
law decay, but ass0 increases froms052.2, the distribution
seems to change from the power-law decay to a locali
function. Whens052.2, we find thatP(t) exhibits the same
universal behavior as standard 2D percolation theory@11#,

P~ t !;t2(t21)f ~ t/t8!, ~5!

r

FIG. 6. Probability distribution of cluster sizet and total strain
«, P(t) andP(«), as a function of the initial strains052.2,5,6.5,
and 10. Solid lines are forP(t) and symbols are forP(«). For
clarity, we plotP(«) only for s052.2(s), 5~1!, and 10(L). Here,
K050 and P151.2986 with L51599 for P(t) and L5801 for
P(«). The dotted line is a guide line with slope5 -1.
6-5
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Y. SHIM, L. E. LEVINE, AND R. THOMSON PHYSICAL REVIEW E65 046146
with t52.055. f (t/t8) is a scaling function with the cutof
cluster sizet8}(P1c2P1)21/s8 and s8536/91 @11#. The
scaling function in Eq.~5! is f (x);exp@2x# for x@1 and
f (x);const. for x!1. Here, we neglect smallt behavior,
which results from the discreteness of the lattice.

Whens0Þ2.2, depending on the value ofs0, the exponent
t for the size distributionP(t) appears to deviate from it
universal value. However, there is no distinctive region
hibiting a persistent power-law decay due to the curvatu
which may represent an initial strain-dependent lon
transient behavior before crossing over to the t
asymptotic, universal behavior. Note from Fig. 6 that t
total strain probability distributionP(«) also shows a similar
behavior as that observed inP(t)—a universal power-law
distribution fors052.2, as compared with a localized distr
bution for a large initial strain that also might be the sa
transient behavior. These results suggest that fors0.2.2, the
true asymptotic power-law decay witht21'1 probably
emerges whent.tc and «.«c , wheretc and «c are cross-
over values to the asymptotic regime, respectively, and
roughly tc , «c'104; for s052.2, tc , «c'102. Thus, the
small t(,tc) as well as« (,«c) behavior is possibly all
transient. From Fig. 6 as well as Figs. 4~a! and 4~b!, it is
reasonable to assume thattc and «c exhibit an initial-strain
dependence since ass0 increases, the scaling regime b
comes narrower. Whens0Þ2.2, although we are unable t
observe the true asymptotic behavior because of the h
values of tc and «c , this argument seems to be consiste
with the universal behavior found in the total strain and cl
ter size.

So far, we have considered the critical behavior of str
related quantities such as the total and mean strain, and
distributions for modelA in the subcritical regime. Scaling
analysis shows that the total strain exhibits critical pow
law behavior with the universal exponentg. This universal
behavior results from the dominating role of the cells hav
the minimum stable strain. In the Sec. III B, we exami
strain correlation functions for modelA and explain the uni-
versal aspects of the model in terms of the strain correla
length.

B. Strain-strain correlation function and strain fluctuations

The geometrical density-density correlation functi
Cg(r ) is usually defined asCg(r )5^r(0)r(r )&, wherer(r )
51 if a siter is occupied, otherwiser(r )50 andrÞ0. It is
known from standard percolation theory that the density c
relation function decays asCg(r );r 22b/nexp@2r/jg# near a
critical point withb55/36 in 2D. In a similar way, we define
the strain-strain correlation functionCs(r ) as

Cs~r !5^ŝ~0!ŝ~r !&5K ~1/N!(
r8

N

ŝ~r 8!ŝ~r1r 8!L
sims

,

~6!

where ŝ(r )5s(r )2^s& with ^ ŝ(r )&50, N is the number of
strained cells, and̂&simsdenotes an average over many sim
lations. One may also consider a strain correlation funct
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very similar to Cg(r ), that is, Cs8(r )5^s(0)s(r )&
5^(1/N)( r8

N s(r 8)s(r1r 8)&sims. Note the difference betwee
Cs8(r ) andCs(r ), where the former one measures the str
correlation between two cells separated byr , while the latter
one measures the correlation of fluctuations from the m
strain. Due to the universal behavior found in the syste
one can expectCs8(r );r 22b/nexp@2r/jg# with b/n55/48.
Indeed, we confirmed the universal scaling fors052.2 and
K050; see Fig. 7~a!. A simple mean field~MF! solution for
the strain correlation function has been obtained as

Cs
MF~r !5~Ns/2a! exp@2ar #, ~7!

where Ns is the noise strength anda5u(12P1)/P1u @2#.
Thus, the MF solution predicts a divergence at the mean fi
critical point P1c

MF51 and an exponential decay.
Figure 7~b! shows our simulation results for the modelA

correlation functionCs(r ) with s052.2 and K050. For
small r, the correlation function appears to exhibit a fa
logarithmic decay, and as shown in the inset of Fig.
Cs(r ,P1) diverges at the critical pointP1c51.306 whenr is
small. On the other hand, for a largerr .10, Cs(r ) exhibits
an exponential decay and whenr>30, Cs(r )'0. This fast
decay to zero indicates that the strain correlation lengthjs
for the correlation function defined in Eq.~6! is small, and

FIG. 7. Correlation functions for case I (K050) with s052.2
andL53001. The inset of~a! showsCs8(r ) and~a! is for scaling of
Cs8(r ) with b55/36 andn54/3. ~b! showsCs(r ) and the inset
showsCs(r ,P1) for r 51.
6-6
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that any divergence at the critical point will be weak. Figu
8 shows the strain correlation lengthjs defined asjs(P1)2

5( rr
2Cs(r ,P1)/( rCs(r ,P1). These simulations suggest th

the strain correlation length also exhibits a power-law beh
ior,

js~P1!;uP1c2P1u2ns, ~8!

where the exponentns50.42 for the critical region (P1c
2P1,0.02) butns deviates from the value whenP1c2P1
.0.02; also note that the deviation from the power law n
the critical point is due to finite-size effects. Since the ra
ns/n'0.32, is smaller than unity, geometrical aspects of
model will dominate over strain aspects, and the total str
is thus well described by standard 2D percolation theo
Although we have calculated the correlation function fo
different initial strain with a large system size to determi
whether or not the exponentns is independent of our mode
parameters used here, it is inconclusive because it requi
huge amount of computational time to observe at least
decade of power-law behavior near the critical point.

Figure 9 shows a successful scaling relation forCs(r ),

Cs~r ,P1!;uP1c2P1u2fr 2vF~r /js! ~9!

with ns5f50.42 andv52b/n55/24, where the scaling
function isF(x);exp@2x#. In the inset, however, it is show
that with ns50.42, f50.31, andv50, an even better scal
ing is obtained withCs(r );uP1c2P1u2fg(r /js) where the
scaling functiong(x);2 ln(x) for smallx and;exp@2x# for
largex. Equation~9! is appealing because it has the univer
power-law relation such asC(r );r 22b/n for r !j andj not
too small. However, we are not able to examine the t
small r regime because of the soft singularity at the critic
point. That is, extremely large system sizes must be use
get sufficiently close to the critical point so thatjs can be
adequately large. Therefore, we are not able to say that
correlation functionCs has the universal form, or whethe
some other scaling law pertains. Similarly, we cannot de
onstrate theoretically any connection between the strain
ponents and the geometric exponents. It is worth mention

FIG. 8. The strain correlation lengthjs as a function ofP1 for
s052.2 andK050.
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however, that since any scaling attempt withns5n or f
50 yields a systematic deviation, it might be reasonable
exclude such possibilities.

Equation~9! applies to an infinite system. For finite sy
tems, the strain correlation lengthjs at the critical point is
limited by the system sizeL, and uP1c2P1u2f is also finite
due to finite-size effects. Also note that the singularity ofF
at the origin is not seen because the lattice discretenes
important whenr'1. On the other hand, whenP1c2P1
.0.03, i.e., sufficiently far from the critical point, the stra
correlation function behaves asCs(r 51,P1);(P1c
2P1)21exp@2c(P1c2P1)# with a constant c, which is no
shown here to avoid overcrowding of figures. This result
in good agreement with the MF solution given in Eq.~7!
except thatP1c

MFÞP1c; we also observed the same behav
for r 52. Since the MF solution neglects fluctuations in t
strain,s(r ), and the strained cluster size is quite small wh
P1 is far from P1c , a MF theory is valid for largeuP1c
2P1u.

C. Supercritical regime „P1ÌP1c…

In the thermodynamic limit, a cluster always spans t
whole system whenP1.P1c but only a localized cluster ex
ists whenP1,P1c. For case I at the critical point, the tota
strain behaves asT(P1c,L);Ldf with the fractal dimension
df51.896(3), asshown in the inset of Fig. 10 and this hold
also for the mean cluster size with the samedf . For case II
with the set of parameters shown in Fig. 1~b!, we obtained
df51.9(1), which is consistent with the case I result. It
known from standard percolation theory@11# that the critical
exponents for the cluster size and correlation length,g andn,
are connected to the fractal dimensiondf by the hyperscaling
relation,

df5~1/2!~D1g/n!, ~10!

whereD is the dimension of the system; in our case,D52.
Since the critical exponent for the total strain isx5g, the

FIG. 9. Scaling of the correlation functionCs(r ) with ns5f
50.42 and v52b/n55/24, where 1.288<P1<1.30 and P1c

51.306. The dotted line is a guide line indicating an exponen
decay. The inset shows scaling withns50.42, f50.31, andv50.
Note that the inset is a log-linear plot. In both plots,s052.2, K0

50, andL53001.
6-7
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fractal dimension of a strained cluster and its total strain
the cases shown in Fig. 1 can be calculated asdf5(1/2)(D
1x/n)51.8958. Our results are in very good agreem
with this prediction. This result implies the very importa
physical conclusion that in order to have a finite nonz
strain per site in the thermodynamic limit, the percolati
control parameter P1 should be P1.P1c because
T(P1c,L)/L2;Ldf22→0 asL→`. But of course, in a finite
system, the strain is finite and nonzero atP1c. Thus, for
finite systems, the strain at thecritical point must exhibit size
dependence. As we will now show, there is a region ab
the critical point where the strain is well behaved.

Our finding ofT(P1c,L);Ldf implies that the strain pe
lattice site,T(P1 ,L)/L2, exhibits the same scaling behavi
as Pspan(P1 ,L) does, wherePspan(P1 ,L) is the probability
that a site belongs to a spanning cluster. As shown in Fig.
the strain per lattice site for case I is

T~P1 ,L !/L2;L2b/nG~L/jg! ~11!

through the critical point, but withuP12P1cu small. The scal-
ing function G(x) is constant forx!1 andG(x);xb/n for
x@1. Thus, for an infinite size of system, the strain per l
tice site isT(P1 ,L)/L2;(P12P1c)

b, that is,T(P1 ,L)/L2 is
well behaved atP1c, not singular. So far, we have consider
model A. Not surprisingly, the total strain of modelB also
exhibits the same universal behavior as observed in modA,
but with a slightly different critical pointP1c51.340(2) for
s051.84 andK050.

These results for the total strain in the vicinity of th
critical point also imply that the mean strain,^s(P1 ,L)&
2^s(L)&c is likewise nonsingular there. This is shown f
case I in Fig. 11, wherês(P1 ,L)&2^s(L)&c;(P12P1c)

k

with k51.05(1) is found near the critical point. Both mod
A and B display the same power-law increase. This res
implies that in the thermodynamic limit,̂s(P1)&2^s&c
;(P12P1c)

k. For modelA, approximately whenP1.P1c

FIG. 10. Scaling of the total strain fors052.2, sm540, K0

50 ~case I!, andP1c51.3062. Here,b55/36 andn54/3. The inset
shows the total strain at the critical point for the case shown in F
1~a! as a function of the system sizeL, yielding the fractal dimen-
sion df51.896(3); for sm540, df51.895(6). Notethat relaxation
from sm540 does not affect the scaling.
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10.02, the mean strain per strained site,^s(P1)&, begins to
deviate from the power law and diverges exponentially
sm5` or converges to a finite asymptotic value,sm, if sm
Þ`. As can be seen in Fig. 11, this avalanche point~where
the mean strain diverges! changes depending on the type
strain propagation—modelA or B—and probably on the
density of locks, but seemingly not on the initial strain.

The almost linear increase in the mean strain nearP1c can
be explained by noting that in this regime, the shape o
spanning cluster is no longer fractal but rather compact w
a continuous increase in the total strain and the mean clu
size. Therefore, by taking a Taylor expansion of^s(P1)&, we
obtained a linear increase, i.e.,

^s~P1!&2^s&c'
]^s~P1!&

]P1
uP1c

~P12P1c!. ~12!

The Taylor expansion is valid, of course, only if the me
strain is well behaved at the critical point.

When KÞ0, these results no longer hold, probably b
cause the activation of the second mechanism in some
increases the mean strain rather abruptly with increas
probability K in Eq. ~1!. For case II with the set of param
eters shown in Fig. 1~b!, we observed a deviation from th
linear increase withk51.3(1) that is not shown here. How
ever, the finite separation between the critical point and
avalanche point still holds.

We close this section with the observation that since
large deforming system demands a finite strain from a p
colation event, this can only be accomplished by the phys
system inhabiting the region between the critical and a
lanche points. So this narrow region is very important, phy
cally.

IV. CONCLUSIONS

Our simple strain percolation model, which captures
essential mechanisms of strain propagation through dislo
tion cell walls, suggests that a deforming metal is a se
organizing system with universal scaling properties. A s
chastic linear response of dislocations in one cell wall

.

FIG. 11. Increase of the mean strain from its critical value
modelA andB as a function ofs0 andsm with K050. Solid lines
are guide lines with slope51.05(1).
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other dislocations generated in a neighboring cell with
occasional breaking of unstable dislocation locks in the w
is our key physical picture for the strain transmission fro
one cell to another. The criticality of our model is charact
ized by critical exponents and a few model parameters.
model parameters control the wall response as descr
above, and are assumed to be functions of the macrosc
stress and strain. As the percolation model parameters
crease, the overall system progresses from a subcritica
gime of essentially negligible macroscopic strain to a criti
state above which the strain is nonzero in the thermodyna
limit, and finally to strain avalanche. Between the critic
point and the avalanche point, lies a narrow region of sta
total system strain growth.

The fractal geometry of a strained cluster at the criti
point implies that the macroscopic strain there is zero
systems where size effects can be neglected, and finite s
is observed only in the supercritical regime. Neverthele
the critical point separates the region of finite strain fro
zero strain, and can serve as a physical definition of the fl
stress for the system.

As the system approaches the critical point, the majo
of the strained cells in a strained cluster take on a strain v
that is independent of the initiating strain. This strain value
that, which is marginally capable of being propagated ind
nitely through the system, and is only slightly larger than
strain below which an initiating strain cannot propagate
all. We have shown that the existence of this critical va
for the mean strain follows directly from the discrete natu
of the dislocations, and amounts to a kind of ‘‘organizatio
of the strain near its minimum transmission value. The ex
tence of a finite nonzero mean strain at the critical poin
the reason why the strain per strained site is well beha
through the critical point and also why the critical point
separated slightly from the avalanche point.~In mean field,
the critical and avalanche points are synonymous.!

One of our central findings is that near the critical poi
the total strain exhibits critical power-law behavior with un
versal critical exponents, which are related to standard
percolation theory. This connection to standard percola
theory exists even though the standard theory contains
e-
J

-

s-

n
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variable corresponding to the strain variable of our mode
turns out that in the critical regime, the strain correlati
length is much smaller than the geometrical correlat
length. Consequently, the critical behavior of the physi
quantities associated with the strain variable are domina
by the geometrical aspects of the model, which we ha
shown are in the same universality class as standard pe
lation theory. In other words, the universal behavior of t
total strain in the system is a consequence of the s
organizing character of the strain in the critical cluster d
scribed in the preceding paragraph.

Due to the narrow scaling regime, the precise form o
scaling function for the strain fluctuation correlation functio
(Cs) has not been found. However, we surmise that a w
power-law decay with an universal exponent might be ch
acteristic of the correlation function near the critical po
because of the universal behavior of the model, which
presume is related to the self-organizing strain behavior.
the other hand, the strain correlation function (Cs8) is well
described by a universal scaling function. We also show
that the mean field theory for the strain correlation functi
~which shows an exponential decay with distance!, is valid
when the system is subcritical and not too near the crit
point.

In this paper, although we have reported results for o
set of case II parameters, we have focused mainly on ca
~with no lock unzipping!. We will report more systematically
on case II in a subsequent paper. Also, we hope to exp
the effect of cell size variation in a later investigation.

Finally, we note that the detailed connection between
model and actual metal deformation has not been mad
this paper. Suffice it here to say simply that the percolat
model is intended to correspond to the fine slip which a
pears at all stages of deformation. The complex connec
between the fine slip and the total deformation in the sys
is left to subsequent papers.
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