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Critical behavior of a strain percolation model for metals
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Extensive simulations of a strain percolation model for a deforming metal have been performed to examine
its strain behavior. We find that the total strain exhibits critical power-law behavior that is well explained by
two-dimensional percolation theory. Near the critical point, most of the strained cells organize themselves
around a state having the minimum or at least marginally stable strain regardless of the initial conditions. A
strain much greater than the minimum stable strain generally decays to a lower value when transmitted to an
unstrained cell. The universal behavior of the total strain in the system is a consequence of the self-organizing
character of the strain in the critical cluster. Although the probability distributions for the total strain and cluster
size appear to exhibit nonuniversal behavior, this may merely represent a transient response before crossover
to a true asymptotic, universal behavior occurs. Other critical aspects of the model are also discussed.
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[. INTRODUCTION Therefore, our study of the model has been incomplete, be-
cause the main object of study in the previous papers was the
In previous papers, we introduced and reported on thgeometrical aspects of the strain clusters, not the associated
geometrical aspects of a percolation model for strain in metstrain. In the current paper, by focusing directly on the strain
als [1,2]. We believe this model corresponds, in stage lllvariable, itself, which has no counterpart in standard perco-
metal deformation, to the fine slip line structure formed in alllation theory, we will make predictions for fine slip strain
stages of metal deformation. See RE3$4] for current re-  that can then be subjected to experimental verification.
views of the general subject. In stage I, the slip is composed In particular, such experimental explorations are currently
exclusively of such lines, which can be as long as the specin progress using atomic force microscopy to study the slip
men side, are parallel to the primary slip planes, are distribline height profiles and transmission electron microscopy to
uted quite uniformly on the surface, and have a height of thestudy the underlying dislocation cell structure. Additional
order of a few Burgers vecto$,6]. As deformation pro- collaborative work is planned to use acoustic emission and
ceeds, secondary slip begins, the fine slip becomes more hgthotoemission experiments to study the time dependence of
erogeneous, and by stage lll, has localized into gross slithe percolation events. So the results of this paper will stimu-
bands[5,6]. But within these bands, the fine slip is still late extensive experimental efforts that can be used both to
present as a well defined fine struct(ive8], with an appar- verify the basic model and show how the model should be
ent minimum distance between the slip lines of the order ofmodified and extended. In contrast to the strain predictions,
50 nm, and a height still of the order of a few Burgers vec-the purely geometrical aspects of the model are not so easily
tors[8]. In addition to the strong localization of the fine slip accessible to experimental measurement.
into bands, the slip is highly localized in time, appearing as Our percolation model for strain has been motivated by a
bursts of strain, or avalanches, lasting less than (91 @nd  conviction that statistical aspects of metal deformation are
perhaps much less than thdt0]) and separated by much dominant, and that the concepts of percolation apply very
longer times. Pond measured relaxation times between burststurally to the generation of strained clusters during metal
of the order of 2 §9], but the time between bursts is almost deformation. Indeed, percolation can be found in many fields
certainly strain rate dependent. It is not clear whether onlyof physics, e.g., fracture network$2], electrical conductiv-
one, or perhaps a few slip line production events are proity [11], flow in a random medifl3], etc. A common feature
duced in each strain burgg]. of the systems is critical power-law behavior characterized
We believe the production of these fine slip lines, whichby a few critical exponents and their fractal structures near
are the elementary events underlying the entire deformatiothe critical point. A self-organized criticalSOQ system
process, can be modeled in stage Il by the strain percolatiofl4—17 exhibits such features without the need to fine-tune
model [1,2]. (The model assumes the presence of a welparameters. Using a simple cellular automaton sandpile
formed and partially ordered dislocation cellular structuremodel, Baket al. showed that the system evolves into a
which is only formed during and after stage Il, when exten-barely stable critical state at which a scale-invariant fractal
sive secondary slip makes its appearanée.previous pa- structure emerges due to the lack of lengtime or size
pers, we have developed an approximate mean field descrigeales present in the systd¥]. A characteristic feature in
tion of the model, studied the purely geometrical aspects 06OC systems is a power-law decay in the size distribution of
the strain clusters generated in the model, and shown thahe dissipation events. A deforming material has been shown
these geometrical aspects are in the same universality clags exhibit such a feature in that an increase of the plastic
as standard percolation thedr/]. But it is the strain gen- strain results in avalanches that occur within a very short
erated by the system that is essential to the physical problertime scale.
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It is well known that a deforming metal is a highly disor- geometrical aspects of the model. It is also important to
dered, complex system on various length scales because, dgtress that although our model is a simplified statistical
ing the deformation process, a large number of dislocationghodel of a deforming metal, we hope to capture the key
(line defect$ are produced and they interact with each othermechanisms of strain propagation and to explain statistical
by long-range ¥/ forces as well as short-range forces. Due toProperties of the system in terms of the universality class.
the increase in dislocation density and the complex mutual NiS paper is organized as follows. In Sec. Il, we present our
interactions between dislocations during plastic deformationStrain percolation model in detail and simulation results are
work hardening occurs. As a result of the deformation prodiven in Sec. lll. We conclude in Sec. IV.
cess, heterogeneous cell structures are formed, in which high
dislocation density walls surround regions of very low dislo- Il. MODEL
cation density; see R€i3] for a critical review of dislocation Fi . . L
patterning. Therefore, a theory of work hardening must ex- irst, we assume that a dislocation cell structure exists in

plain both the cell formation process and the transport of metal single crystal and then, as a response to an external

mobile dislocations through the walls of the cell structure. In3tress incrementoe, a strains,, Is nucleated at some weak

spite of intensive efforts extending over several decades, Cole" on a slip plane. We consider two different mechanisms

solution to the problem of work hardening remains elusive.Of gtrain propagation from a strained cell to unstrained neigh-
Despite all the complexity occurring during the deforma- boring cells. In the first cas@ase }, a relatively stable wall

tion, a fractal structure has been identified in transmissiof 3" act as a source of new dislocations and the ssaiopa-

electron micrographs of the dislocation cell structure of a C attes; by actlvaltllng_lsourcefs ('jr.‘ T’UCht.Wa"S‘ Smo%_eqm_va-th
single crystal after tensile deformati¢h8] and in a simula- ent 1o a small piieup ol disiocations €xpanding in the
tion of a stochastic dislocation dynamics mofEd]. A box- strained cell, the stress acting on the wall barrier between the

counting analysigfractal analysis of the structures reveals tv.\1° ceII254|s Ipr(;)k[]).ortlonal to tr:ﬁ number of ?r'ls?fﬁt'ons |n'tth§
that the cell size and dislocation wall size distributions ex-P! eup_[ .]' n this case, we then assume that the magnitude
hibit power-law behaviof19,20]. Another interesting feature of strain induced in an unstrained cell is linearly proportional

given in Ref.[20] is a shape change in the probability distri- to the str:_ain in a neigh_boring strained cell. The pro.por_tion_al-

bution of the total dislocation densities. which is the steady-'ty factor is a stochastic variable that reflects the distribution

state solution of a theoretical two-dimensional dislocationOf SOurces W'th.m the walls. In the_second céase 1), as an

density evolution equation proposed for the transmissio dditional relatl\_/ely rare mechanlsm_, unstable l.OCkS within a

electron micrograph. Depending on the noise intensity in th all can be un2|ppeq by a ngarby dislocation pileup thgt can
ead to a large localized strain with the amount of stiain

system that is inversely proportional to the external stress,.. o — .
the distribution changes from a power-law decay to an asym§mce the probabilitK of unzipping a lock is assumed to be

metric bell shape function as the external stress increaseléf‘ea”y proportional to thg number O.f dls_locatlons in the

From the statistical physics point of view, these critical prop-p'leUp’ K=5Ko/P,<1. K, is a proportionality constant. In

erties of a deforming metal confirm that the system should b&§2S€ 1:Ko=0. _ _ .

treated as a stochastic dynamical system. _The Ia_tw of stral_n propag_aﬂon fro_m a strained cell to a
Kocks [21] proposed a statistical model of a dislocation "€19hPoring unstrained cell is thus given as

line gliding through random immobile obstacles under an P for 0= n-<K

external stress, and the resulting critical shape of the dislo- s* :{ 2 =m=

cation line[22] is quite similar to that observed in an inva-

sion percolation model in random medit3]. In the Kocks

model, the externally applied stress must be larger than theheres* is the number of dislocations induced in the previ-

yield stress in order for the dislocations to percolate througtously unstrained cell and is the number in its strained

the obstacle distribution; this leads to the existence of a critineighbor.P, is a measure of how efficiently the cell walls

cal stress at the depinning transition point. Since a dislocasan transmit strain from a strained cell to an unstrained one

tion line in the model is driven through the random immobile via source activationn, and 7, are random numbers with

obstacles by an external stress, we note that the physiclk n,, n,<1. The values of these parameters must be de-

picture of the motion is rather similar to that of a driven termined either from experiment or from dislocation simula-

interface or line motion in a quenched random noise by artions (i.e., from the underlying cell physigs

external force[23]. But the Kocks model focuses on the = When an unstrained cell has more than one strained

percolation of a single dislocation through a set of obstacleseighbor, there are several possible rules that can be used for

whereas ours addresses the statistical transport of collectivdetermining the transmitted strain. In this paper, we consider

groups of dislocations through the 3D cell structure. Thustwo different sets of rules, referred to as modelandB. In

the Kocks model applies to the early stages of deformatiomodel A, the amount of strain transmitted to the unstrained

near the initial yield, whereas ours applies to a system neaell s* takes the largest value among the contributions from

stage Il after significant strain has occurred, and dislocatioiits neighbors. In modeB, the unstrained cell takes the first

ordering is well advanced. successful strain transmission as the computer program steps
In this paper, we determine the universality class of thehrough the strained neighbors. In both models, growth of a

strain related quantities of the strain percolation model andtrained cluster takes place only on its periphery. Since dis-

study strain-strain correlation functions in the light of thelocations are discrete entities, the minimum amount of strain

1
sPym, for K<y =<1, @
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that can be induced in an unstrained cell is unityg*ik 1 in
a simulation, we set* =0. In a real metal, the maximum g
amount of strain that can be induced in a csl|, depends (@) -
on the dislocation wall properties. Accordingly, sf >s,,,
thens* is set tos,,. We considers,, to be a model param-
eter. Thus, the independent model parametersPareP-, %
Ko, So, ands,. Y
We note that a great deal of information on the values of
these parameters, as well as the functional form for the sto-
chastic function, can be obtained by atomic force microscopy
measurements of slip lines. For example, measurements
looking at the variation of slip line heighdlong individual
slip lines could yield information on the distribution of
strains occurring within a percolating cluster. This informa-
tion would need to be combined with transmission electron
microscopy data on the underlying dislocation cell struc-
tures. In situ high-resolution reflection x-ray topography i
could also provide useful information by simultaneously im-
aging both the formation of slip lines and the underlying Vi 7~
near-surface dislocation structures. (b) i
Our simulations have been carried out on a 2D regular S g t A
square lattice, with no cell size variation, where the linear =, ;
system size id, and all the length scales in the system are M: R, A
measured in units of a linear cell sicg=1. All of the strain AN By 3
variables are measured in units of the minimum amount of
strain that can be induced in an unstrained cell, sgj, o : E s
=1. As noted in the Introduction, in a standard percolation - A ! e
problem, a change in the lattice geometry changes the perco- o o A‘\ Yol
lation threshold but does not change the universality class. A b & rk % ey
single cluster is grown from the center of the system until N i 2
growth stops. 2D is the relevant dimension for this problem g % % “‘y\
since we consider slip on only a single slip plane. Although - ; o 3 ‘
this growth algorithm is similar to that of Leaf25], it is a Py o7 bﬁ»
correlated percolation problem unlike other random percola- @ 3 ™
tion problems since the probability that a site is strained
depends on the strain of its neighbors as given in E&y.
Most of the reported simulations focus on modefor both FIG. 1. Spanning cluster at the critical point. Darker color rep-
subcritical and supercritical regimes but relevant results fofesents larger strain and lighter color represents smaller strain in a

modelB are given in Sec. IIC. We first show results for the cell. Here,s,=2.2 andL =401. (a) is for Ko=0 with P;=1.306
Subcntlcal reg|me for mod% andsm:w, and(b) is for KOZOOl with P]_: 12926,'32:40, and

sm=40. Note that(a) is for case | andb) is for case Il.

=

e

Ill. RESULTS

1.32

A. Subcritical regime (P1<Py/)

The general shape of a spanning cluster at the critical
point is fractal, as shown in Fig. 1. The overall fractal shape
does not depend on the detailed model parameters as long as
the system is near the critical point. On the other hand, the
distribution of strain changes dramatically when the density
of the unstable locks becomes nonzero. WKen0 (case J,
the spanning cluster shown in Fig(al for a small initial
strainsy= 2.2 is quite ramified, but the localized regions hav-
ing a large strain are relatively compact. For this set of pa-

rameters, the critical point is &4.=1.306(2) as shown in 1.26 .
0.00 0.01 0.02

P..(L)

Fig. 2. For a largesy, the system has a large strain near the Lo

initiation point, but this strain decays quickly as the cluster

extends. For s;=10 and Ky=0, we obtained Py, FIG. 2. The percolation threshold for cases shown in Fig. 1.
=1.30644). P,.=1.306(2) for Fig. {a) andP,.=1.2926(30) for Fig. (b).
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When K+#0 (case I), some of strained cells develop a 10~
large strain mainly due to the unzipping process, which, in , So Ky» S
turn, increases the probability of activating the unzipping 107 (1)]2.2,0,

process K=sK,/P;) in a neighboring cell. This leads to g; ;.02’,%_;’1,40 |

ridge shaped regions of large strain as shown in Fig).1

Note that if such a process does not occur consecutivelyina & 107

nearby cell, the large strain decays rapidly. Furthermore, %

when the unzipping process is activated, the critical value for 1078

P, becomes lower than that for case | because the system has AN

a greater chance of developing a large strain. Figure 2 shows 10° | slope=—4.410.01

the extrapolation of the critical poirfpercolation thresho)d B \

to the thermodynamic limitl(— o) for the cases shown in 0 10 100
Figs. 1@ and Xb). Not surprisingly, the critical value fd?, strain s

is insensitive to changes i, ands,,, but for case II, this

critical value is quite sensitive to changesfa and K. FIG. 3. Probability distribution of having stramat the critical

. . point for the cases shown in Fig. 1 and also for a larger initial strain
We found prewgusl;{Z] thgt for ca§e~| the mean .stram of so=10 with Ky=0. Sharp peaks are due to the initial strasg)(

deflned as thg strain per stramgd cens$c~2 at the cr|.t|cal and the result of the unzipping proces, & 40).

point. Insight into the mechanism responsible for this mean

strain can be obtained by considering how strain propagates . .

just below and at the critical point. Just below the critical near the minimum or at least marginally stable state regard-

oint. the average strain on the periohery of a arowin CILIS[ess of the initial conditions, a behavior similar to that found
point, 9 periphery 9 9 in other SOC systems.

ter must decrease until the growth stops. At the critical point, Figure 4 shows the critical behavior of the total strin

the strain propagation stabilizes to a small but finite valuedefined asT(Py)=(2,s(r,Py)) for case I(with sy=2.2 and
that is close to the minimum stable value of strain. For any ! A o=

trial transmission, on the average, the value of the strain in

the strained site must be such that from Eq, 10 ' [
1 05 _ ) '.*--.,..K. S| 401
Pi(m2)(s)=1. 2 =10t S e ]
= 10° e W'“"‘-m. e
a %"bo.
Thus, the minimum stable value of strain is given approxi- 6 ()
mately by (S)siapie~2/P1c~1.5, which, as expected, is 07 *e B 4'61
slightly smaller than the measured mean strain. For case |, Pl [ e, M9
the mean strain at the critical point becomes larger since the = 10° | e m@%o o| 4001 |
large strains from the unzipping events give an additional \ (b) " 20
strain increment. 10° 5 = -
. . " 10 10 10
From the argument just presented, the existence of a criti- P, P,
[

cal mean strain is seen to depend directly on the requirement

of a minimum value for the transmitted strain, and thus on » v
the discrete nature of the dislocations. Not surprisingly, the 2 10 T “"“«.N (c)
mean strain will be seen to play an important physical and = 0% | ‘231 A‘% ’
mathematical role in the following. Qg2 | |8 %.% |
A useful measure of how strain is apportioned among the R I iy
cells is given by the strain probability distribution function, 10 * =
P(s), whereP(s) ds is the average number of sites in a 2 107" [ e e ”“‘“%%% CI.
simulation having the straig As can be seen in Fig. (s) = 102 o_s—|61 o,
is a slowly varying function near the minimum strain. For a . s | 401 %%%
larger strains, however, the strain distribution exhibits a fast =107 | o] e o]
power-law decay witiP(s)~s~*** whenK,=0, but when 10'41 o — e o

Ko#0, it deviates from the power law. The difference be- (P, —P )L1/v
tween the two curves fag,=2.2 and 10 is due to finite-size e 1

effe_CtS’ since for an 'r_'f'_n_'te Sys_tem, the be_hgwo_r near the G, 4. Total strain as a function &, and its scaling plotya)
origin where the strain initiates will have negligible influence g ¢, so=2.2 and(b) is for s,=10 with K,=0. A power-law fit

on the total system behavior. As predicted ab@®@sianie IS yields (a) —2.34(2) and(b) —2.364). Dotted lines in(a) and (b)
very close to 1.5. A straiB> (S)sap|e IS Most likely to decay  are power-law fits to the datéc) and(d) are scaling plots for case
to a lower value when transmitted to an unstrained cellj and Il shown in Fig. 1:(c) and (d) are forK,=0 and 0.01 with

Since Figs. (&) and Xb) use the same gray scale and thes,=2.2, respectively. Herey/v=1.79 andv=4/3 with the critical
lightest gray is roughlys)., most of the cells seem to be pointsP, given in Fig. 2.
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FIG. 5. The mean strain as a functionRf for the case shown FIG. 6. Probability distribution of cluster sizeand total strain

in Fig. 1(a). The asymptotic mean strain at the critical point is &’ P(t) andP(z), as a function of the initial straigy=2.2,5,6.5,

(s).=2.14. The inset shows the distribution of the mean strain fofand_ 10. Solid lines are foP(t) and symbols are foP(e). For
$o=7, Ko=0 andL =801. clarity, we plotP(g) only for sp=2.2(0), 5(+), and 10(© ). Here,

Ko=0 and P;=1.2986 withL=1599 for P(t) and L=801 for

. . - . The dotted line is a guide line with slope -1.
10) as well as its scaling result for case | and Il shown in F|g.P(8) g pe

1. Near the critical point, the total straihis well described ] o ]

by a power law such thal(P;)~(Py—P;) ™% with y P.1—>Plc,(s)c—<s(P1).>—>O, and this behavior is consistent
—2.35(2) as shown in Figs.(@ and 4b). The deviation With the asymptotic scaling result ofT(P;)/S(P,)
from the power law is due to finite-size effects. Note that the=(£(P1))/(t(P1))~const.

critical exponent for the total strain jg~ y=2.389, wherey Since ife(P1)~t(Py), thenx=0, Eq. (4) suggests that
is the critical exponent for the mean cluster Si3eP,) ther_e mlght be a small correction to scaling for_ the_ total
~(P.—P;)~". As can be seen in Fig(#), for a large initial ~ Strain. Using S(P1)~|P1c—P4| ™7 with an approximation
strain ofs,= 10, a much larger system size is required to sedS(P1))~(&(P1))/(t(P1)), one can estimate roughly the
the asymptotic power-law behavior due to the effect of thecorrection fromT(Py)~[P = Py| ™ "(To+ Teon) Where To
initiation point. The excellent scaling collapse in Figcy  ~a(S)c is constantwherea is also constantand the correc-
and 4d) confirms that the total strain is simply proportional tion term isT.,,~|P1.— P1|* with ' = «; an actual calcu-
to the mean cluster size, and implies that for a large systeration yieldsk’~3/4 andT,~2.2 fors,=2.2 andKy=0. As
size, the total strain has the same scaling law as the geometthie system approaches the critical point, however, the correc-

cal mean cluster siz§, tion becomes negligibly small compared to the leading term
To, and eventually, the asymptotic scaling form given in Eq.
T(P4,L)~ LX’VQ(ngg), (3)  (3)isrecovered. Thus, the exponet(t>0) implies the pres-

ence of a correction to scaling and determines the decay rate
where y=y and v=4/3. The scaling function in Eq3) is  toward the asymptotic mean strain. Since we find that the
O(x)~x"X"" for x>1 and Q(x)~const. forx<1 with the ~ Vvalue ofx depends strongly on the strain related model pa-
geometrical correlation lengtéig(P;)~|Py.— P4 . Thus, rameterssy, P, andKo, « appears not to be a universal
this result illustrates that the geometrical behavior dominate§Xponent. The inset of Fig. 5 shows the distribution of the
the strain behavior, and clearly demonstrates that the totanean strain,P((s)) for case | withs,=7. As the system
strain displays universal behavior regardless of the value okpproaches the critical point, the location of the peak moves
Ko ands,. toward the critical valugs), and the distribution becomes
Further insight into the dominant role of geometry on thesharper. We conclude that the geometry of a strained cluster
strain variable can be obtained by examining the mean strait$ determined by the geometrical correlation length but a
per strained site(s(P;))=(g(P;)/t(P,)), wheret and & decay toward the asymptotic mean strain is controlled by the
=3,s(r,P;) are the cluster size and total strain for eachstrain-dependent exponent
simulation, respectively. It is clear from Fig. 5 thés), Figure 6 shows the probability distributions for the cluster
—(s(P,)) also exhibits power-law behavior near the critical Size and total strain, where for exampl(t) dt is the aver-
point, and the critical behavior of the mean strain can beage number of clusters found to have siz&/hen the initial
described by strain sp= 2.2, the size distributiorP(t) exhibits a power-
law decay, but as; increases fronsy= 2.2, the distribution
(S)e—(S(P1))~|P1c— P4|%, (4) seems to change from the power-law decay to a localized
function. Whensy,= 2.2, we find thatP(t) exhibits the same

where(s). is the asymptotic mean strain at the critical point, Universal behavior as standard 2D percolation th¢by,

The exponent isk=0.33(1) and 0.91(2) foKy,=0 and
0.01, respectively, whes,=2.2. Note that since>0, when Pt)~t~ DR/, (5)
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with 7=2.055. f(t/t") is a scaling function with the cutoff

cluster sizet’=(P,.—P;)" %" and o'=36/91 [11]. The
scaling function in Eq(5) is f(x)~exd—x] for x>1 and
f(x)~const. forx<1. Here, we neglect smatl behavior,
which results from the discreteness of the lattice.
Whensy# 2.2, depending on the value g, the exponent
7 for the size distributiorP(t) appears to deviate from its
universal value. However, there is no distinctive region ex-
hibiting a persistent power-law decay due to the curvatures,
which may represent an initial strain-dependent long-
transient behavior before crossing over to the true
asymptotic, universal behavior. Note from Fig. 6 that the
total strain probability distributiofP(e) also shows a similar
behavior as that observed iA(t)—a universal power-law

distribution forsy=2.2, as compared with a localized distri-
bution for a large initial strain that also might be the same
transient behavior. These results suggest thasfor2.2, the
true asymptotic power-law decay with—1~1 probably
emerges whem>t, ande>e., wheret; and e, are cross-

0.7

05|

L
g o 1001
No 3001

over values to the asymptotic regime, respectively, and are Ef 03l *osono
roughly te, e.~10% for sp=2.2, t,, e,~10%. Thus, the = 7
small t(<ty) as well ase (<&, behavior is possibly all ©
transient. From Fig. 6 as well as Figsasand 4b), it is 01}
reasonable to assume thatand . exhibit an initial-strain
dependence since ag increases, the scaling regime be- —les
-0.1

comes narrower. Whegy# 2.2, although we are unable to
observe the true asymptotic behavior because of the huge
values oft; and ., this argument seems to be consistent
with the universal behavior found in the total strain and clus- FIG. 7. Correlation functions for case K(=0) with s,=2.2
ter size. andL=3001. The inset ofa) showsC,(r) and(a) is for scaling of

So far, we have considered the critical behavior of strairCs(r) with 8=5/36 andv=4/3. (b) showsC(r) and the inset
related quantities such as the total and mean strain, and th&ipowsC(r,Py) for r=1.
distributions for modelA in the subcritical regime. Scaling
analysis shows that the total strain exhibits critical powervery similar to Cy(r), that is, Cg(r)=(s(0)s(r))
law behavior with the universal exponemt This universal :<(1/N)E:\|rs(r,)s(r+r,)>sims- Note the difference between
behavior results from the dominating role of the cells havingc! (1) and C(r), where the former one measures the strain
the minimum stable strain. In the Sec. IllB, we examinecqre|ation between two cells separatedrbyvhile the latter
strain correlation functions for modéland explain the uni- — one measures the correlation of fluctuations from the mean
versal aspects of the model in terms of the strain correlatioR sin. Due to the universal behavior found in the system,
length. one can expecC(r)~r~ 2#"exy —r/¢;] with Blv=5/48.
Indeed, we confirmed the universal scaling $g=2.2 and
Ko=0; see Fig. 7a). A simple mean fieldMF) solution for
the strain correlation function has been obtained as

100

B. Strain-strain correlation function and strain fluctuations

The geometrical density-density correlation function
Cy(r) is usually defined a€4(r)=(p(0)p(r)), wherep(r)
=1 if a siter is occupied, otherwispg(r)=0 andr#0. Itis
known from standard percolation theory that the density cor- _ .
relation function decays a8y(r)~r~2#"ex —r/¢,] near a  Where \ is the noise strength and=[(1—P4)/P4| [2].
critical point with 3=5/36 in 2D. In a similar way, we define Thus, the MF solution predicts a divergence at the mean field
the strain-strain correlation functiog(r) as F=1 and an exponential decay.

CYF(r)=(NyJ2a) exd — ar], 7)

critical point P}%
Figure 7b) shows our simulation results for the model
correlation functionCg(r) with sp;=2.2 and Ky=0. For
small r, the correlation function appears to exhibit a fast
logarithmic decay, and as shown in the inset of Fig. 7,
C4(r,P,) diverges at the critical poir®,;.=1.306 wherr is
R . small. On the other hand, for a larges=10, C(r) exhibits
wheres(r)=s(r)—(s) with (s(r))=0, N is the number of an exponential decay and wher 30, C4(r)~0. This fast
strained cells, and);.,sdenotes an average over many simu-decay to zero indicates that the strain correlation lergth
lations. One may also consider a strain correlation functiorfor the correlation function defined in E¢) is small, and

N
cs<r>=<%<0>%<r>>=<<1/N>2 s(r)s(r+r') ),

(6)
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FIG. 8. The strain correlation length as a function ofP; for FIG. 9. Scaling of the correlation functioBy(r) with vs=¢
— — =0.42 and w=2pB/v=>5/24, where 1.288P;<1.30 and P,
Sp=2.2 andKy=0.

=1.306. The dotted line is a guide line indicating an exponential
decay. The inset shows scaling with=0.42, ¢»=0.31, andw=0.
Note that the inset is a log-linear plot. In both plogg=2.2, K
=0, andL=3001.

that any divergence at the critical point will be weak. Figure
8 shows the strain correlation lengéq defined ast(P;)?
=3,r2Cqr,P,)/=,C(r,P,). These simulations suggest that
the strain correlation length also exhibits a power-law behavhowever, that since any scaling attempt with= or ¢
or, =0 yields a systematic deviation, it might be reasonable to
exclude such possibilities.
E(P1)~|P1c—Py| 7S, (8 Equation(9) applies to an infinite system. For finite sys-
tems, the strain correlation lengt at the critical point is
where the exponents=0.42 for the critical region Ric  |imited by the system size, and|P;.— P;| ™% is also finite
—P;1<0.02) butvs deviates from the value whe;.—P;  due to finite-size effects. Also note that the singularity7of
>0.02; also note that the deviation from the power law neagt the origin is not seen because the lattice discreteness is
the critical point is due to finite-size effects. Since the ratiojmportant whenr~1. On the other hand, wheR,.—P;
vs/v~0.32, is smaller than unity, geometrical aspects of the> .03, i.e., sufficiently far from the critical point, the strain
model will dominate over strain aspects, and the total straigorrelation function behaves asC(r=1,P;)~ (P
is thus well described by standard 2D percolation theory.— p )~lexq —c(P,.— P;)] with a constant ¢, which is not
Although we have calculated the correlation function for agshown here to avoid overcrowding of figures. This result is
different initial strain with a large system size to determinejp, good agreement with the MF solution given in E@)
whether or not the exponent is independent of our model gycept thatP)F# P, we also observed the same behavior
parameters used here, it iS_ incoqclusive because it requiresig r— 2 since the MF solution neglects fluctuations in the
huge amount of computational time to observe at least ongyain 5(r), and the strained cluster size is quite small when

decade of power-law behavior near the critical point. P, is far from P,., a MF theory is valid for largd P,
Figure 9 shows a successful scaling relation@gofr), —Py.
Cyr,P)~[P—Py| " r “F(rl&y) ) C. Supercritical regime (P;>P;.)

In the thermodynamic limit, a cluster always spans the
whole system whe;>P,. but only a localized cluster ex-
ists whenP,;<P,.. For case | at the critical point, the total
strain behaves a8(P,,L)~L% with the fractal dimension

scaling functiong(x) ~ — In(x) for smallx and~ exg —x] for d¢=1.8943), asshown in the inset of Fig. 10 and this holds

largex. Equation(9) is appealing because it has the universalal_SO for the mean cluster size with _the _sadae For case I
power-law relation such a8(r)~r ~28!" for r<¢ and & not with the set of parameters shown in Figbji we obtained

too small. However, we are not able to examine the tru%(:f:l'g(l)'WhiCh is consisten_t with the case | resu_lt'. It is
smallr regime because of the soft singularity at the critical nown from standard percolation theddA] that the critical

point. That is, extremely large system sizes must be used foxponents for the cluster S|ze.and cprrelatlon Iengthndy,
get sufficiently close to the critical point so th&t can be are connected to the fractal dimensiby the hyperscaling

adequately large. Therefore, we are not able to say that tH&aton,

correlation funct?onCS has thg univgrsal form, or whether di=(1/2)(D+ y/v), (10)
some other scaling law pertains. Similarly, we cannot dem-

onstrate theoretically any connection between the strain exwhereD is the dimension of the system; in our caBes 2.
ponents and the geometric exponents. It is worth mentioningSince the critical exponent for the total strainyis= vy, the

with vg=¢=0.42 andw=2B/v=>5/24, where the scaling
function isF(x) ~exd —x]. In the inset, however, it is shown
that with vs=0.42, $=0.31, andw=0, an even better scal-
ing is obtained withCy(r)~|P.— P1|~%g(r/&) where the

046146-7



Y. SHIM, L. E. LEVINE, AND R. THOMSON

4.0

PHYSICAL REVIEW EG65 046146

10 T
7
10 T s a . L(s, S, K ;
10° | 1.896£0.003 Wt 10 o | 8012 40) . 1
. ry o [ 1601(2.2, 40 . odoo
= 10° o A oqo' p oo 00 ¥ 5
= o - o| 801(2.2, =) o o0 R
. 10° | P = +| 201(1.84, ) . P
ES > 1] 0 o | 401(1.84, <o) Iy
! v 10 801(1.84 S
‘w20 10 S - - ) « | 801(1.84,)
= 10 10 10 A
o L 10
= nd D_‘_ _ o
= i w10 2 model A model B
. Y
x"A 10-3
T slope=1.05
‘ ‘ : 10" L : . . -
0.0 5 10 0.0 10 10°  10° 100 102 107 10°
1/
(P,-P JL” PPy

FIG. 10. Scaling of the total strain fa,=2.2, s,,=40, Kq
=0 (case ), andP,,=1.3062. Here3=5/36 andv=4/3. The inset
shows the total strain at the critical point for the case shown in Fig
1(a) as a function of the system site yielding the fractal dimen-
sion d;=1.8943); for s,,=40, d;=1.8956). Notethat relaxation
from s,,=40 does not affect the scaling.

FIG. 11. Increase of the mean strain from its critical value for
model A andB as a function ofy ands,, with Ko=0. Solid lines
are guide lines with slope-1.051).

+0.02, the mean strain per strained s{tg,P,)), begins to
deviate from the power law and diverges exponentially if
Sm=0o° or converges to a finite asymptotic val,, if s,

fractal dimension of a strained cluster and its total strain for# . As can be seen in Fig. 11, this avalanche poivitere

the cases shown in Fig. 1 can be calculatedias(1/2)(D  the mean strain divergeshanges depending on the type of

+ x/v)=1.8958. Our results are in very good agreemenistrain propagation—modeA or B—and probably on the
with this prediction. This result implies the very important density of locks, but seemingly not on the initial strain.
physical conclusion that in order to have a finite nonzero The almost linear increase in the mean strain iacan
strain per site in the thermodynamic limit, the percolationbe explained by noting that in this regime, the shape of a
control parameter P, should be P,>P;. because spanning cluster is no longer fractal but rather compact with
T(Pye,L)/L2~L% 20 asL—o. But of course, in a finite & continuous increase in the total strain and the mean cluster

system, the strain is finite and nonzeroR{.. Thus, for
finite systems, the strain at tleeitical point must exhibit size

size. Therefore, by taking a Taylor expansion sfP,)), we
obtained a linear increase, i.e.,

dependence. As we will now show, there is a region above

the critical point where the strain is well behaved.

Our finding of T(Py¢,L) ~LY% implies that the strain per
lattice site,T(P,,L)/L?, exhibits the same scaling behavior
as Pspaf P1,L) does, wherePs,,(P4,L) is the probability

(s(Py))

<S(P1)>—<S>c*(9—Pl (12

|P10(P1_ P1o)-

The Taylor expansion is valid, of course, only if the mean

that a site belongs to a spanning cluster. As shown in Fig. 1¢train is well behaved at the critical point.

the strain per lattice site for case | is

T(Py,L)/L2~LA*G(LI&y) (12)
through the critical point, but withP, — P, J small. The scal-
ing function G(x) is constant forx<1 and G(x)~x#'" for
x>1. Thus, for an infinite size of system, the strain per lat-
tice site isT(Py,L)/L2~(P,—P,J?, thatis, T(P,,L)/L? is
well behaved aP,., not singular. So far, we have considered
model A. Not surprisingly, the total strain of mod@& also
exhibits the same universal behavior as observed in madel
but with a slightly different critical poinP,,=1.340(2) for
So=1.84 andK,=0.

These results for the total strain in the vicinity of the
critical point also imply that the mean straifs(P,,L))
—(s(L)). is likewise nonsingular there. This is shown for
case | in Fig. 11, wherés(P,L))—(s(L))c~(P1—P1J*
with k=1.05(1) is found near the critical point. Both model

When K#0, these results no longer hold, probably be-
cause the activation of the second mechanism in some cells
increases the mean strain rather abruptly with increasing
probability K in Eq. (1). For case Il with the set of param-
eters shown in Fig. (b), we observed a deviation from the
linear increase withc=1.3(1) that is not shown here. How-
ever, the finite separation between the critical point and the
avalanche point still holds.

We close this section with the observation that since a
large deforming system demands a finite strain from a per-
colation event, this can only be accomplished by the physical
system inhabiting the region between the critical and ava-
lanche points. So this narrow region is very important, physi-
cally.

IV. CONCLUSIONS

Our simple strain percolation model, which captures the
essential mechanisms of strain propagation through disloca-

A and B display the same power-law increase. This resultion cell walls, suggests that a deforming metal is a self-

implies that in the thermodynamic limit{s(P4))—{s).
~(P1—Py9". For modelA, approximately wherP;>P.

organizing system with universal scaling properties. A sto-

chastic linear response of dislocations in one cell wall to
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other dislocations generated in a neighboring cell with anvariable corresponding to the strain variable of our model. It
occasional breaking of unstable dislocation locks in the walturns out that in the critical regime, the strain correlation
is our key physical picture for the strain transmission fromlength is much smaller than the geometrical correlation
one cell to another. The criticality of our model is character-length. Consequently, the critical behavior of the physical
ized by critical exponents and a few model parameters. Thquantities associated with the strain variable are dominated
model parameters control the wall response as describday the geometrical aspects of the model, which we have
above, and are assumed to be functions of the macroscopsfiown are in the same universality class as standard perco-
stress and strain. As the percolation model parameters ifation theory. In other words, the universal behavior of the
crease, the overall system progresses from a subcritical réstal strain in the system is a consequence of the self-
gime of essentially negligible macroscopic strain to a criticalorganizing character of the strain in the critical cluster de-
state above which the strain is nonzero in the thermodynamiscribed in the preceding paragraph.
limit, and finally to strain avalanche. Between the critical Due to the narrow scaling regime, the precise form of a
point and the avalanche point, lies a narrow region of stablecaling function for the strain fluctuation correlation function
total system strain growth. (Cy has not been found. However, we surmise that a weak
The fractal geometry of a strained cluster at the criticalpower-law decay with an universal exponent might be char-
point implies that the macroscopic strain there is zero foracteristic of the correlation function near the critical point
systems where size effects can be neglected, and finite straiecause of the universal behavior of the model, which we
is observed only in the supercritical regime. Neverthelesspresume is related to the self-organizing strain behavior. On
the critical point separates the region of finite strain fromthe other hand, the strain correlation functicd.} is well
zero strain, and can serve as a physical definition of the flodescribed by a universal scaling function. We also showed
stress for the system. that the mean field theory for the strain correlation function
As the system approaches the critical point, the majoritywhich shows an exponential decay with distands valid
of the strained cells in a strained cluster take on a strain valughen the system is subcritical and not too near the critical
that is independent of the initiating strain. This strain value ispoint.
that, which is marginally capable of being propagated indefi- In this paper, although we have reported results for one
nitely through the system, and is only slightly larger than theset of case Il parameters, we have focused mainly on case |
strain below which an initiating strain cannot propagate afwith no lock unzipping. We will report more systematically
all. We have shown that the existence of this critical valueon case Il in a subsequent paper. Also, we hope to explore
for the mean strain follows directly from the discrete naturethe effect of cell size variation in a later investigation.
of the dislocations, and amounts to a kind of “organization”  Finally, we note that the detailed connection between our
of the strain near its minimum transmission value. The exismodel and actual metal deformation has not been made in
tence of a finite nonzero mean strain at the critical point ishis paper. Suffice it here to say simply that the percolation
the reason why the strain per strained site is well behavefhodel is intended to correspond to the fine slip which ap-
through the critical point and also why the critical point is pears at all stages of deformation. The complex connection
separated slightly from the avalanche poifih mean field, between the fine slip and the total deformation in the system

the critical and avalanche points are synonympus. is left to subsequent papers.
One of our central findings is that near the critical point,
the total strain exhibits critical power-law behavior with uni- ACKNOWLEDGMENT

versal critical exponents, which are related to standard 2D
percolation theory. This connection to standard percolation R. Thomson gratefully acknowledges partial support from
theory exists even though the standard theory contains nBacific Northwest National Laboratory.
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